例如他曾經在國科大的講座上說過這麼一句話:
“有85%的數學和物理知識沒有傳入華夏,這些知識都被外國人緊緊捂著。”
這句話其實是有些唬人的,有點刻意為人設而口出狂言的味道。
誰都知道國外必然有一些知識沒有與咱們共享,但那些內容主要涵蓋於前端領域,並且決然沒有85%這麼離譜。
於是呢。
當時被和他一起說出口、用於佐證以上觀點的另一句話,在網上便也成了笑談:
“你們不知道吧,三角形有44072個心。”
但實際上這句話是正確的,並且是一個非常正式的數學研究方向。
只不過它是隸屬於初等平面幾何的結論,平幾早就不再是前端數學的研究方向了,對於大多數人來說基本上用不到。
所以這個知識不是沒傳入國內,而是教了也沒啥意義——哪怕是國外頂尖大學的頂尖競賽班,也不會對這些三角心進行研究。
一般來說。
普通人只需要掌握五心,學幾何的頂多頂多掌握50種就到頂了。
再往後差不多屬於純理論的範疇,極其冷門且偏僻。
因此曹教授拿這個例子去佐證“有85%的數學和物理知識沒有傳入華夏”的做法並不正確,不過本身這個數字沒啥問題。
不是反智,更不是民科,因為三角心的判定是三線共點,由此鎖定的心實在是太多太多了。
目前有個網站將這些心都收錄在了一起,網址為du/cyclopedia/ETCPart4。(這位畢竟是蝸殼的教授,口嗨的內容躺平任嘲,不過這個資料倒確實是無誤的)
OK,話題再回歸原處。
斐波那契數列在生活和數學上的應用極廣,而其中的完全平方項有哪些,也一直是個很有矛盾色彩的問題。
所謂完全平方數。
指的是一個數能表示成某個整數的平方的形式。
比如說4=2^2,9=3^3,256=4^4等等......
為啥說斐波那契數列中的完全平方項是個很矛盾的問題呢?
原因很簡單。
這個問題直到徐雲穿越的五十多年前,也就是1964年的時候才被英國的數學家J. H. E. 計算出來。
從時間節點上來說,無疑屬於近代才被破解的一道難題。
但與此同時。
它的破解過程運用的都是初等數論內容,和素數定理與四色定理一個性質。
這也是極少數能夠用初等數論解決的數學難題之一,理論上在1800年其實就可以破解出來了。
當然了。
以前那個極少數的例子不包括哥猜——運氣好的話,每年你都能看到上千條哥德巴赫猜想的初等證明從國內外的民科手中誕生.......
不過就像物理學可以分成經典物理和更微觀的量子物理一樣。
J. H. E. ...也就是科恩證明出來的完全平方項只是某個範圍內的答案,比較公認的是前二十萬個斐波那契數這個範圍。
如果將範圍無限擴大,那麼還是可以再找到幾個完全平方項的。
比如說第四個數是884358447525575649,大概在1056412078的位置。